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Weinberg Angle and Pion Beta Decay in the Spinor
Strong Interaction Theory
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From an isospin SU(2) 3 hypercharge U (1) gauge-invariant meson action for
K +, p + ® m + n , a prediction of the Cabbibo angle was obtained earlier. Using
another result of the spinor strong interaction theory that the s quark is only a
little heavier than the d quark, the above action can be extended to a weakly
broken SU(3) one. The Weinberg angle is found to be 30 deg in the limit of this
SU(3) symmetry. In the approximation and context entailing this limit, the
Weinberg angle can be removed from the list of undetermined fundamental
parameters in electroweak theory. The spinor strong interaction Lagrangian used
above and applied to the decay p + ® e + n is shown to hold for p + ® p 0e + n as
well, rendering the conserved vector current hypothesis hitherto required to
account for the latter decay superfluous.

1. INTRODUCTION

The current approach to low-energy meson theory is phenomenological.

The Cabbibo and Weinberg angles are considered as fundamental parameters

to be determined by data. Two different Lagrangians, one of them including

the conserved vector current hypothesis, hereafter abbreviated by CVC, are

required to account for the closely related decays p + ® e + n and p + ® p 0e + n .
Further, quark confinement, the apparent absence of ground-state scalar

mesons, the U (1) problem, and the nonobservation of the Higgs boson remain

as basic unsolved problems. These problems seem to be unrelated in the

current view and have persisted for decades (Lee, 1981; Ka
È
lleÂn, 1964). Their

resolution is impeded by the lack of a nonphenomeno logical strong interaction

theory at low energies.
Such a theory was proposed a few years ago (Hoh, 1993) and developed

recently (Hoh, 1994, 1996). Both quark coordinates xI and xII are transformed
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into an observable laboratory coordinate X and a nonobservable relative

coordinate x 5 xII 2 xI, which is thus a hidden variable. Hadron wave function

amplitudes are finite, which is required for quark confinement and for the
generation of the masses of the gauge bosons.

This is in contrast with the conventional amplitude | c | 5 1/ ! 2EV for

a Klein±Gordon hadron, where E is its energy and V the volume of the

normalization box. This amplitude vanishes as V ® ` and hence cannot

generate the mass of the gauge boson. Actually, the normalization * d 3X | c | 2

5 1, which leads to the above amplitude, is a choice by convention and is
not any physical requirement. This choice is abandoned in the spinor strong

interaction theory (Hoh, 1993, 1994, 1996, 1997).

Based upon this theory, the problems mentioned in the first paragraph,

except for two, have been basically resolved in a unified manner. This paper is

a further development of recent work (Hoh, 1997), hereafter denoted by I, on

p , K ® e, m 1 n . It resolves the two remaining problems, namely the origin of
the Weinberg angle and the relationship of the above two modes of p + decay.

In I, it was shown that the Cabbibo angle q C is determinable from the K
and p masses and is not a fundamental parameter in that context. The gauge

boson mass squared M 2
w is proportional to the slope of the confinement potential

and the scale of the relative time between the quarks, whereby the K’ s or the
p ’ s play the role of Higgs bosons. The successful results of purely leptonic

interactions of the standard model can be taken over without the aid of the

unseen Higgs bosons.

In this paper, the notations and structure of I will be followed, unless

stated otherwise. SU(2) 3 U (1) gauge invariance for the meson isodoublets

in I is generalized to a weakly broken SU(3) one. In Section 2, such an SU(3)
meson action is justified. SU(3) gauge invariance is shown in Section 3, as

is invariance with respect to inclusion of internal functions. The total action

for the meson, gauge boson, and lepton system is given in Section 4. In

Section 5, the SU(2)I 3 U (1)Y gauge-invariant part of the SU(3) meson action

is separated out for coupling to the leptons. The origin of the Weinberg angle

is exposed. In Section 6, the action for p + ® e + n in I is reproduced for
application to p + ® p 0e + n . The first- and second-order perturbational treat-

ment of this action leading to the amplitude for the last decay is worked out

in Sections 7 and 8. In Section 9, it is shown that this amplitude and the

decay rate are nearly the same as those in the literature, given in the Appendix,

based on a phenomenological Lagrangian and CVC.

2. SU(3) MESON ACTION

In I, K + ® m + n was considered as a typical case. As was mentioned in

Section 11 of I, the decay rate formula for this process also holds for D + ®
m + n with the D mass replacing the K mass.
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In the basic meson equation (4.11) of Hoh (1993) or the meson action

(2.1a) below, flavor dependence enters SMT only through the term M 2
m 5

(ma 1 mb)
2/4, where a and b are the quark flavors. Application of the spinor

strong interaction theory to meson spectra (Hoh, 1996) led to the quark

masses mu 5 0.6592 Gev, md 2 mu 5 0.00215, ms 2 md 5 0.08175, and

mc 5 1.6215. Thus, the s quark is only 11% heavier than the d quark and

M 2
m for K and p differ by 12.8%. The large difference between K and p

masses arises from subtraction of two nearly equal but large numbers.

Similarly, M 2
m for D 2 (dc) and D 2

s (sc) differ only by 7.3%.
These results allow that the SU(2)I 3 U (1)Y gauge-invariant action of

(I 2.4) can be approximately generalized to a SU(3) one. Here, I denotes

isospin and Y hypercharge. The form of such an action is the same as (I 2.4),

SMT 5 # d 4X +MT

5 2 # d 4X # d 4x
1

2

3 H 1 12 {[(1 2 a)D bÇ a 2 - bÇ a
x ] C ²

T (X ) x eÇ
a(x)}{(aDfeÇ 1 - xfeÇ ) C T (X ) x f

bÇ (x)}

1
1

2
{(aDbÇ a 1 - bÇ a

x ) C ²
T(X ) x eÇ

a(x)}

3 {[(1 2 a)DfeÇ 2 - xfeÇ ] C T(X ) x f
bÇ (x)} 1 h.c. 2

1 ( f p 2 M 2
m) C ²

T(X ) C T (X )[ c cÇ
b(x) x b

cÇ (x) 1 c.c.] J (2.1a)

Here, however,

C T(X ) 5 1
C T1(X )

C T2(X )

C T3(X ) 2 (2.1b)

are associated with the triplet D 0 (uc), D 2 , and D 2
s or the triplet K +, K 0,

and a virtual h s(ss). As is shown in Section 5 of Hoh (1994), h s is forbidden
by U (1) gauge invariance. Further,

D abÇ 5 - abÇ 1
i

2
g o

8

l 5 1

l lW
abÇ
l (2.1c)
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where l l denotes the Gell-Mann matrices and W l are eight real gauge fields.

This repalces (I 2.3d):

D abÇ
2 5 - abÇ 1

i

2
g s WabÅ 1

i

2
g8YC abÇ (2.2)

where s are the Pauli matrices and W 5 (W1, W2, W3).
Note that a generalization of the SU(3) gauge fields in (2.1c) to SU(3)

3 U (1)C , where C denotes the charm quantum number, implies an approxi-

mate SU(4) symmetry. There is, however, no such approximative symmetry,

because mc . . ms. Therefore, such a U (1)C group is excluded.

Furthermore, such a generalization to (2.1b) and (2.1c) is not possible

in the conventional phenomenological approach (Lee, 1981; Ka
È
lleÂn, 1964)

due to (i) the fact that the s quark is generally appreciably heavier than the

d quark and (ii) the fact that currents, which correspond to the C ’ s here,

involving an s quark are suppressed by a factor of sin q C in the phenomenolog-

ical Lagrangians of the Cabbibo theory.

3. SU(3) GAUGE INVARIANCE AND INCLUSION OF
INTERNAL FUNCTIONS

Gauge transformations of (2.1) follow (Ludwig and Falter, 1988).
Neglecting the quark mass differences so that M 2

m is the same for all three

members of (2.1b), we find that (2.1) is invariant under

C T ® C 8T 5 PT C T (3.1a)

PT 5 exp 3 i

2
g o

8

l 5 1

l l w l (X ) 4 (3.1b)

l lW
abÇ
l ® PT( l l W abÇ

l ) P 2 1
T 1

i

g
( - abÇ PT) P 2 1

T (3.1c)

where w l are real phases. In addition, following Section 8 of I, we make the

generalizations below to include internal functions for the D triplet:

C T ® C T j T 5 1
C T1 j T1

C T2 j T2

C T3 j T3 2 (3.2a)
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where

j T1 5 (z 1u4 2 u 1z4)/ ! 2, j T2 5 (z 2u4 2 u 2z4)/ ! 2

j T3 5 (z 3u4 2 u 3z4)/ ! 2 (3.2b)

If the subscript 4 is replaced by 3, (3.2) represents the triplet K +, K 0, and h s.

Dropping the spinor indices, (I 8.5) is generalized to

W1 7 iW2 5 ! 2 W 6 ® ! 2 W 6
I DI 6

W4 7 iW5 5 ! 2 W 6
V ® ! 2 W 6

V DV 6

W6 7 iW7 5 ! 2 W 6
U ® ! 2 W 6

U DU 6 (3.3)

DI 1 5 z 1 - / - z 2 2 z2 - / - z1 1 z ® u, DI 2 5 2 D *I 1

DV 1 5 z 1 - / - z 3 2 z3 - / - z1 1 z ® u, DV 2 5 2 D *V 1

DU 1 5 z 2 - / - z 3 2 z3 - / - z2 1 z ® u, DU 2 5 2 D *U 1 (3.4)

Operating on (3.2b) by (3.4) leads to the results

DI 1 j T2 5 j T1, DI 2 j T1 5 j T2, DU 1 j T3 5 j T2, DU 2 j T2 5 j T3

DV 1 j T3 5 j T1, DV 2 j T1 5 j T3 (3.5)

with all other D j T combinations vanishing.

As in Section 8 of I, (3.2)±(3.4) are substituted into (2.1). Making use
of (3.5) and (I 8.3),

z k zr 5 u k ur 5 d k
r, z k ur 5 0 (3.6)

it is seen that (2.1) is invariant under these substitutions.

4. THE TOTAL ACTION

The action (I 2.1) employed for K + ® m + n is generalized to

SML 5 SMT 1 SF8 1 SLr 1 SLl 1 SLm (4.1)

Here, SF8 is a generalization of the SU(2) 3 U (1) gauge-invariant boson

action (I 2.2),

SF8 5 2
1

4 # d 4 X o
8

l 5 1

G m k
l G l m k (4.2a)

G m k
l 5 - m W k

l 2 - k W m
l 2 fjklgW m

j W k
k (4.2b)

[ l j , l k] 5 2ifjkl l l (4.2c)
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where m and k refer to the components of a conventional four-vector, which

are employed in place of the spinor indices a, b in (3.1c). fjkl are the SU(3)

structure constants. SF8 is invariant under the SU(3) gauge transformations
(3.1b) and (3.1c). Analogous to Section 2 of I, the massless right-handed

singlet and left-handed doublet lepton actions are

SLr 5 2
i

4 # d 4 X x m a( - abÇ 1
i

2
Yg8 C abÇ ) x m bÇ 1 c.c. (4.3a)

SLl 5 2
i

4 # d 4 X c aÇ T
d D2aÇ b c b

d 1 c.c. (4.3b)

c b
d 5 1 c

b
n

c b
m 2 (4.3c)

where T denotes transpose, m refers to the muon, and n to the neutrino.

Note that c and x are interchanged in (I 2.3a)±(I 2.3c), which is an
error inconsistent with the definitions (A3) of Hoh (1993), but turns out not

to affect the results in I. The lepton mass term SLm is the same as (I 2.3c).

The gauge invariance properties of the lepton actions are the same as those

discussed above (I 2.6).

5. ORIGIN OF THE WEINBERG ANGLE

The action SML of (4.1) is not self-consistent in that there are eight gauge
fields in SMT and SF8, but only four in SL. Use (3.3), drop the spinor indices,

and write out the sum in (2.1c) in the form

2

! 2W 1
I | ! 2W 1

VW3 1
1

! 3
W8

|
| ! 2W 1

U2 W3 1
1

! 3
W8! 2W 2

I1 2| (5.1)o
8

l 5 1

l lW l 5
|2 2 2 2 2 2 2 2 2 2 2 2

2
2

! 3
W8! 2W 2

V 2 ! 2W 2
U

where the SU(2)I 3 U (1)Y subgroup gauge fields are confined by the dashed

lines. These fields together with the first two of (2.1b) can now be associated

with the corresponding ones in (4.3).
In I, (2.2) operates on the first two components in (2.1b) representing

D 0 and D 2 or K + and K 0, which have Y 5 1. Compare now (2.2) to (2.1c)

and (5.1), limited to SU(2) 3 U (1) gauge fields separated off by the dashed

lines. Identifying CabÇ with W abÇ
8 , we find that the Weinberg angle q w is given by
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tan q w 5 g8/g 5 1/ ! 3, sin2 q w 5 0.25, g 5 2e (5.2)

in the limit of SU(3) symmetry. Thus, the Weinberg angle comes mainly
from the 1/ ! 3 factor in l 8.

Data (Particle Data Group, 1996) give an average sin2 q w 5 0.2241,

which leads to g8/g 5 (1/ ! 3)/1.0743. This descrepancy of 7.43% may be

attributed to the SU(3) symmetry-breaking effect due to the unequal s and d
quark masses. It is expected to be of the same order of magnitude as the

differences in M 2
m for the different members of the triplet (3.2a). Indeed, this

appears to be the case since the last differences are 7.3% and 12.8% for the

D triplet and K +, K 0, and h s , respectively, as was shown above (2.1).

In the limit of SU(3) symmetry, the minimal substitutions invariant under

U (1) and SU(2) gauge transformations now share in an appealing manner

the same coupling constant e:

- ® - 1 ieA U (1) (5.3a)

- ® - 1 ie s W SU(2) (5.3b)

where (2.2) and (5.2) have been consulted. To the approximation entailing

this limit, the Weinberg angle can thus be removed from the list of fundamental
parameters to be determined by other data in the standard electroweak model.

In (I 11.4), it was shown that the Cabbibo angle was derivable from the

K and p masses. The difference of these masses arises from the relatively

small difference in the s-quark and d-quark masses (Hoh, 1996). Whether

this small mass difference, which breaks the SU(3) symmetry above, is also

the universal origin of the Cabbibo angle has not been shown in other contexts,
such as the weak decay of baryons. Should this turn out to be the case, the

Cabbibo angle can also be removed from the list of unknown fundamental

parameters.

6. ACTION FOR PION BETA DECAY p + ® p 0e + n

The action for the pion weak decay p + ® e + n is given by (I 9.1):

S3ML 5 SM3 1 SF3 1 SLr 1 SLl 1 SLm (6.1)

Here, SF3 is the same as (4.2a) with l 5 1, 2, and 3 and SM3 is (2.1a) with

C t(X ) 5 1
C t 1 (X )

C t0(X )

C t 2 (X ) 2 (6.2a)

D abÇ 5 - abÇ 1
i

2
g 1

W3 ! 2W 1
I 0

! 2W 2
I 0 ! 2W 1

I

0 ! 2W 2
I 2 W3 2

abÇ

(6.2b)
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The subscripts 6 and 0 refer to p 6 and p 0, respectively.

SO(3) gauge invariance of SMT with (6.2) as well as invariance with

respect to inclusion of internal functions have been shown in Section 7 of
Hoh (1994) and Section 9 of I, respectively. In the following, it will be shown

that (6.1) also holds for p + ® p 0e + n , apart from some redefinitions involving

multiplications by 2 ! 2.

The last decay is similar to the decay D + ® D g (Hoh, n.d.; hereafter

denoted by II), in that the final hadron state is not vacuum, as is the case

for p + ® e + n , but another hadron. Therefore, the quantization procedure of
II will be adopted.

7. FIRST-ORDER PERTURBATION AND DECAY AMPLITUDE

The action (6.1) is split up into zeroth-, first-, and second-order parts

according to (I 2.6), with SM2 and SF2 replaced by SM3 and SF3. The zeroth-

order terms account for a p + at rest. The meson wave functions in (2.1a) and

(6.2a) are written in the form of (II 3.1),

C t(X ) C abÇ (x) 5 ( K bK exp[ 2 iEKX 0 1 iKX 2 (x 0/ t 0)
2]

3 [ c K(x) d abÇ 2 c K(x) s abÇ ]

bK 5 aK 1 a (1)
K (X 0), c ® x (7.1)

where the relative time scale t 0 factor is included, as in (I 3.2). EK is the

energy of the meson and aK the annihilation operator for it. a (1)
K (X 0) is the

associated first-order decay amplitude varying slowly with the time X 0.

Summation over K is symbolic because only one K value is allowed. This

is due to the nonlinear nature of the meson equations (4.11) and (4.12) of

Hoh (1993).

Analogous to (I 4.3b, c), let

| i & 5 | p +(K+ 5 0) & , ^ f | 5 ^ p 0 (K0) |

| a0 | i & 5 | 0 & , ^ f | a *0K 5 ^ 0 | (7.2)

Here, the subscripts 1 and 0 denote p + and p 0, respectively. Thus, E 1 0

below is the energy of a p + at rest and E0K is the energy of a p 0 with

momentum K0. Let the first-order terms of S3ML be sandwiched between ^ f |
and | i & . Collecting terms containing a (1)

1 0 (X 0), as in (I 4.4) or (II 3.5), leads to

2
i

2
E 1 0 SfiVM # d 4x c 2

1 0 (x ), VM 5 # d 3X

S fi 5 ^ f | a (1)*1 0 (X 0 ® ` ) a 1 0 | i & (7.3)
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Terms linear in W 2 are basically (I 4.6), modified to include the final p 0 in

motion, and read

2
! 2

4
g # d 4X # d 4 x e i(EoK 2 E 1 0)X0 2 iK0 X H (E 1 0 1 E0K) x 0K x 1 0 W 2

0

2 KoW
2 x 0K x 1 0 2

1

2
(E 1 0 1 E0K) W 2 ( x 0K 2 c 0K)

1 (W 2 x ( x 0K 1 c 0K))
-
- x

x 1 0 2 x 1 0 W 2 1 -
- x

x ( x 0K 1 c 0K) 2 J
W 2 abÇ 5 W 2

0 d abÇ 2 s abÇ W 2 (7.4)

Due to the small difference in the p + and p 0 masses, the momentum K0 is small,

just as the momentum of D is small in D* ® D g of II. Thus, the treatment of

slowly moving pseudoscalar mesons in Appendix B of II applies here also. It is
based upon expansion in another small parameter e 0 5 K0/E0K of (II B5). To first

order in e 0, (II B7) and (II B8) show that 2 c 1 0 5 x 1 0 5 x 0K 5 2 c 0K and that

x 0K and c 0K are of order e 0. Using this result and equating the first of (7.3) to

the negative of the first of (7.4) yields a decay amplitude corresponding to (I 4.7),

SFi 5
i

! 2

g

VM # d 4 X e i(E0K 2 E 1 0)X 0 2 iK0 X 1

E 1 0

3 ((E 1 0 1 E0K)W 2
0 1 K0W

2 1 D IX) (7.5a)

D IX 5 2 2K0W
2 1 H # d 4x F 2

1

2
(E 1 0 1 E0K) W 2 ( x 0K 2 c 0K)

1 (W 2 3 ( x 0K 1 c 0K))
-
- x

x 1 0

2 x 1 0 W 2 1 -
- x

3 ( x 0K 1 c 0K) 2 G J Y # d 4x c 2
1 0(x) (7.5b)

8. SECOND-ORDER PERTURBATION AND GAUGE BOSON MASS

This section corresponds to Section 5 of I. Variation of (4.1) with respect

to W 1 abÇ and collection of the second-order terms leads to an expression

analogous to (I 5.1),
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1

2
MW 2

abÇ 2
1

4
- abÇ ( - dcÇ W 2

cÇ d) 1 g 2(. . .) 1
1

2 ! 2
g c ea(X ) c n bÇ (X )

1
1

32
g 2 # d 4x W 2

eÇ f [ C *t 1 x eÇ
1 a C t 1 x f

1 bÇ 1 x ® c 1 c.c.] 5 0 (8.1)

where the subscript e refers to the positron. The g 2(. . .) term denotes W-

cubed terms. The first three terms are dropped because they are much smaller

than the last term, associated with the gauge boson mass. Making use of
(7.1) with bK 5 1 and the second of (7.4), we find that (8.1) leads to

W 2
0 5

g

2 ! 2 M 2
w

( c e1 c n 1Ç 1 c e2 c n 2Ç ) (8.2a)

W 2 5
g

2 ! 2 M 2
w

( 2 s abÊc ea c n bÈ ) (8.2b)

M 2
w 5

1

4
g 2 # d 3x x 2

1 0 (x) # dx0e 2 2(x0/ t
0
)2

5 p ! 2 p g 2 b m0 t o 5 (80.33 GeV)2 (8.2c)

where (8.2c) is the same as (I 5.2b) and b m0 is the slope of the confinement

potential (7.6b) of Hoh (1993).

The plane-wave functions for free leptons entering (8.2) satisfy the Dirac

equation in spinor form [see, e.g., (4.5) of Hoh (1993), putting VPB 5 0

there]. As in the literature (Ka
È
lleÂn, 1964), negative- energy solutions, to be

denoted by the superscript ( 2 ), with negative momentum are assigned to the

positron, and the complex conjugate of the positive-energy solutions, to be

denoted by the superscript ( 1 ), with positive momentum are assigned to the

neutrino. These read

c n bÇ 5 V 2 1/2
n e i(E n X0 2 K n X) u ( 1 )

n bÇ (K n )

c ea 5 V 2 1/2
e ei(EeX

0 2 KeX ) u ( 2 )
ea ( 2 Ke) (8.3a)

u ( 1 )
n i (K n ) 5 (2E n )

2 1/2 (K n 1 2 i K n 2, 2 E n 2 K n 3)

u ( 1 )
n zÇ (K n ) 5 (2E n )

2 1/2 (E n 2 K n 3, 2 K n 1 2 iK n 2)

u ( 2 )
e1 ( 2 Ke) 5 [2(Ee 1 me)]

2 1/2 ( 2 Ke1 2 iKe2, Ee 1 me 1 Ke3)

u ( 2 )
e2 ( 2 Ke) 5 [2(Ee 1 me)]

2 1/2 ( 2 Ee 2 me 1 Ke3, Ke1 2 iKe2) (8.3b)

where me is the positron mass. The commas in the parentheses separate the

spin-up and -down cases.
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Inserting (8.2) into (7.5) and making use of (8.3a) leads to

Sfi 5 i ! 2 (V n Ve)
2 1/2 V 2 1

M GE 2 1
1 0 # d 4 X

3 {exp[i (E0K 1 Ee 1 E n 2 E 1 0)X
0

2 i(K0 1 Ke 1 K n )X ]} (1 1 D I)

3 {(E 1 0 1 E0K) u( 2 )
ea ( 2 Ke) u( 1 )

n aÇ (K n )

2 K0 s abÇ u( 2 )
ea ( 2 Ke) u ( 1 )

n bÇ (K n )} (8.4a)

D I 5 D IX/(W 2
0 (E 1 0 1 E0K) 1 K0W

2 ) (8.4b)

9. DECAY RATE

In the Appendix, the decay amplitude Sfi(K) and decay rate 1/ t based
upon CVC (Ka

È
lleÂn, 1964) are given. Compare this amplitude to Sfi of (8.4a).

With (A2±5, 6, 24) of Ka
È
lleÂn (1964) and (8.3b), it can be shown that the

expressions in braces in (8.4a) and (A1) are equal, noting that E0K 5 E00 to

first order in e 0 according to (II B6c) and (II B8a). Dropping the D I term in

(8.4a) for the moment, the comparison yields

| Sfi | 5 ! 2 2 (E0K /E 1 0)
1/2 | Sfi(K) | (9.1)

The factor 2 (E0K/E 1 0)
1/2 stems from the following. In the Appendix, the

amplitudes of the wave functions of p + and p 0 are (2E 1 0 VM) 2 1/2 and (2E0K

VM) 2 1/2, respectively. There is no such normalized amplitude in the spinor

strong interaction theory, as was pointed out in the introduction and is seen
in (7.1). The factor ! 2 comes from the definition of W 2 in (3.3) and is seen

in (6.2b).

The factor 2 ! 2 can be absorbed into M 2
W. Divide (8.1) by 2 ! 2 and,

instead of (8.2c), let

M 2
W 5

1

2 ! 2

1

4
g 2 # d 3 x x 2

1 0(x) # dx0e 2 2(x0/ t
0
)2

5
1

2
p ! p g 2 b m0 t 0 5 (80.33 GeV)2 (9.2)

This leads to W 2 5 (g /8M 2
w)( . . . ) instead of (8.2).

Consequently, Sfi of (8.4a) ® Sfi /2 ! 2, and (9.1) goes over to
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| Sfi | 5 (E0K/E 1 0)
1/2 | Sfi(K) | (9.3)

With the data in Particle Data Group (1996), (A4) yields the decay time
t 5 2.457 sec, which is just outside the error limit of the measured 2.54 sec

6 3.3% (Particle Data Group, 1996). Replacing Sfi(K) in (A2) by Sfi in (9.3),

the decay time is increased by the factor E 1 0/E00 and becomes t 5 2.54 sec,

in agreement with the measured value.

This agreement is obtained by neglecting the D I term in (8.4a), which

is of order e 0. This can be seen from (8.4b) and (7.5b), where W 2
0 and W 2

are of the same order. The energy D of (A3a) less me is available to impart

the three decay products with momenta. The upper limit of the p 0 momentum

| K0 | is obtained when both the positron and the neutrino move in the same

direction. Let the average value of | K0 | be half this limit; e 0 & 1.49% is

obtained. The decay time t is proportional to (1 1 D r)
2 2, so that the predicted

t 5 2.54 sec above can be off by about 3%.
In conclusion, the spinor strong interaction Lagrangian (6.1) accounts

for both p + ® e + n and p + ® p 0e + n , without recourse to CVC relied upon

in the Appendix. This is achieved by redefining M 2
W according to (9.2), which

replaces (8.2c) or (I 5.2b).

This redefinition also leads to the result that the waek decay rate G (K
or p ® m or e 1 n ) of (I 6.5) and (I 10.4) should be reduced by a factor of

8. This does not alter the main results of I, but changes some of the derived

parameters in Section 11 of I. The altered values are V /L 6
M 5

(0.207 GeV)3, t 0 , 0.59 3 106 fm, and V 1/3 , 5.7 3 1010 fm.

The results of purely leptonic interactions of Section 12 of I are retained

if (I 12.5), corresponding to (8.1), remains unchanged by the new MW value
in (9.2). This is achieved by redefining SF3 in (6.1) or (I 9.2a) and SF2 of (I

2.2) to include a factor of 2 ! 2.

APPENDIX, p + ® p 0e + n FROM CVC

The rate of this decay based on CVC has been given in the literature.

Here, part of the exposition by Ka
È
lleÂn (1964) will be reproduced. Notations

used above which have direct correspondences to those in Ka
È
lleÂn (1964) will

be adopted below.

The decay amplitude obtained from (14.94) of Ka
È
lleÂn (1964) is

Sfi(K) 5 2 i # dX0 ^ p 0, e +, n | d H1 | p + &

5 1±2 V 2 1
M (Ve V n )

2 1/2G(E 1 0 E0K) 2 1/2{ (K m
1 1 K m

0 )
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3 u( 1 )
n (K n )(1 2 g 5) g m u ( 2 )

e ( 2 Ke)} # d 4X e i(K
m
1 2 K

m
0 2 K

m
e 2 K

m
n )X m (A1)

where g represents the usual Dirac matrices given by (A2)±(A5), (A6) of
Ka

È
lleÂn (1964) and K m 5 (EK, K ). Further, the u’ s are the four-compone nt

counterparts of (8.3b) and are given by (A2)±(A24) of Ka
È
lleÂn (1964).

The decay rate is given by (14.95) of Ka
È
lleÂn (1964) and is written in

the form

1

t
5 G ( p + ® p 0e + n ) 5 o final states o spins | Sfi(K) | 2/Td

5 (2 p ) 2 9VM Ve V n # d 3K0 d 3Ke d 3K n o spins | Sfi(K) | 2/Td (A2)

where Td denotes a long time period during which decay takes place. Introduc-

ing, as in (14.103) and (14.106) of Ka
È
lleÂn (1964),

D 5 E 1 0 2 E00 5 4.5936 MeV (A3a)

e 5 m 2
e / D 2 5 1.2375 3 10 2 2 (A3b)

and neglecting D 2 next to (E 1 0 1 E0K )2, we find that (A2) has become
(14.109) of Ka

È
lleÂn (1964):

1

t
5 (G 2/192 p 3) (1 1 E00 /E 1 0)

3 D 5

3 F 2

5
! 1 2 e (2 2 9 e 2 8 e 2) 1 6 e 2 log

1 1 ! 1 2 e
! e G (A4)
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